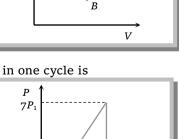
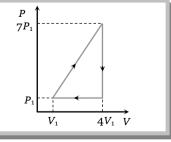


Practice Problems

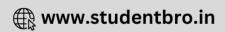

Problems based on ΔQ , ΔU and ΔW


Work done in the given *P-V* diagram in the cyclic process is 1.

	 (a) PV (b) 2PV (c) PV/2 (d) 3PV 			$ \begin{array}{c} \uparrow \\ P \\ $	$(2P,)$ $(P, 2V)$ $V \longrightarrow$	
2.	Which of the following	is not a thermodynamics co-or	rdinate			
	(a) <i>P</i>	(b) <i>T</i>	(c) V		(d) <i>R</i>	
3.	Which of the following	can not determine the state of	a thermo	dynamic system		[AFMC 2001]
	. Which of the following can not determine the state of a t		(b) Volume and temperature		ature	
temp	(c) Temperature and pr perature	ressure	(d)		Any one of pres	sure, volume or

- In the figure given two processes A and B are shown by which a thermo-dynamical system goes from initial to 4. final state F. If ΔQ_A and ΔQ_B are respectively the heats supplied to the systems then
 - (a) $\Delta Q_A = \Delta Q_B$
 - (b) $\Delta Q_A \ge \Delta Q_B$
 - (c) $\Delta Q_A < \Delta Q_B$
 - (d) $\Delta Q_A > \Delta Q_B$
- In the cyclic process shown in the figure, the work done by the gas in one cycle is 5٠
 - (a) 28 p_1V_1
 - (b) 14 p_1V_1
 - (c) $18 p_1 V_1$
 - (d) $9 p_1 V_1$
- 6. The internal energy of an ideal gas depends upon

(a) Specific volume (b) Pressure


[RPMT 1997; MP PMT 1999]

(d) Density

Get More Learning Materials Here :

(c) Temperature

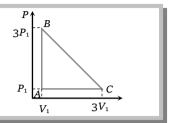
120 Thermodynamic Processes

- An ideal gas is taken around the cycle ABCA as shown in the P-V diagram. The net work done by the gas during 7. the cycle is equal to
 - (a) $12 P_1 V_1$
 - (b) $6 P_1 V_1$
 - (c) $3 P_1 V_1$
 - (d) P_1V_1
- 8. The internal energy U is a unique function of any state, because change in U[CPMT 1980]
 - (a) Does not depend upon path (b)
 - (c) Corresponds to an adiabatic process (d) Corresponds to an isothermal process
- Which of the following statements is/are correct 9.
 - (a) Whenever heat is supplied to a gas, its internal energy increases
 - (b) Internal energy of a gas must increase when its temperature is increased
 - (c) Internal energy of a gas may be increased even if heat is not supplied to the gas
 - (d) Internal energy of a gas is proportional to square of the velocity of the vessel in which gas is contained
- *P-V* diagram of an ideal gas is as shown in figure. Work done by the gas in process *ABCD* is 10.
 - (a) $4 P_0 V_0$
 - (b) $2P_0V_0$
 - (c) $3 P_0 V_0$
 - (d) P_0V_0

Problems based on Joule's law

11. In a water-fall the water falls from a height of 100 m. If the entire kinetic energy of water is converted into heat, the rise in temperature of water will be

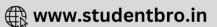
(a) 0.23°C (b) 0.46°C (c) 2.3°C


A lead bullet of 10 g travelling at 300 m/s strikes against a block of wood and comes to rest. Assuming 50% of 12. heat is absorbed by the bullet, the increase in its temperature is (specific heat of lead = 150J/kg, K)

(a) 100°C (b) 125°C (d) 200°C 13. The mechanical equivalent of heat *J* is [MP PET 2000] (a) A constant (b) A physical quantity (c) A conversion factor (d) None of these 14. The S.I. unit of mechanical equivalent of heat is [MP PMT/PET 1998] (a) *Joule* × *Calorie* (b) Joule / Calorie (c) Calorie \times Erg (d) Erg / Calorie


A lead ball moving with a velocity V strikes a wall and stops. If 50% of its energy is converted into heat, then 15. what will be the increase in temperature (Specific heat of lead is *S*)

CLICK HERE


(b) $\frac{V^2}{4 V^2}$ (d) $\frac{V^2S}{2I}$ (a) $\frac{2V^2}{K}$ (c) $\frac{V^2S}{I}$

Depend upon the path

(d) 0.023°C

[CPMT 1991]

(c) 150°C

(c) Increasing the temperature of 1 kg of water through $10^{\circ}C$ (d) Increasing the temperature of 10 kg of water through 10°C Problems based on First law of thermodynamics Basic level First law of thermodynamics is a special case of [CPMT 1985; RPET 2000; DCE 2000; CBSE PMT 2000; AIEEE 2002; AFM 18. (a) Newton's law (b) Law of conservation of energy (c) Charle's law (d) Law of heat exchange If $\Delta Q > 0$ when heat flows into a system, $\Delta W > 0$ when work is done on the system, then the increase in the 19. internal energy ΔU is [AMU (Med.) 2001] (b) $\Delta W - \Delta Q$ (a) $\Delta W + \Delta Q$ (c) $\Delta Q - \Delta W$ (d) $-(\Delta Q + \Delta W)$ In a given process on an ideal gas, dW = 0 and dQ < 0. Then for the gas [IIT-JEE (Screening) 2001] 20. The volume will increase (a) The temperature will decrease (b) (c) The pressure will remain constant (d) The temperature will increase 21. If ΔQ and ΔW represent the heat supplied to the system and the work done on the system respectively, then the first law of thermodynamics can be written as (where ΔU is the internal energy) (a) $\Delta O = \Delta U + \Delta W$ (b) $\Delta Q = \Delta U - \Delta W$ (c) $\Delta Q = \Delta W - \Delta U$ (d) $\Delta Q = -\Delta W - \Delta U$ In thermodynamic process, 200 Joules of heat is given to a gas and 100 Joules of work is also done on it. The 22. change in internal energy of the gas is (a) 100 J (b) 300 J (c) 419 J (d) 24 J In a thermodynamic process pressure of a fixed mass of a gas is changed in such a manner that the gas releases 23. 20 joules of heat and 8 joules of work was done on the gas. If the initial internal energy of the gas was 30 *joules*, then the final internal energy will be (c) 18 J (d) 58 I (a) 2 *I* (b) 42 J In a reversible isobaric heating of an ideal gas from state 1 to state 2, the equations for heat transfer and work 24. are (a) $Q = C_P(T_2 - T_1), W = p(V_2 - V_1)$ (b) $Q = C_P(T_2 - T_1), W = 0$

A 10kg mass falls through 25 m on to the ground and bounces to a height of 0.50 m. Assume that all potential

energy lost is used in heating up the mass. The temperature rise will be (Given specific heat of the material is

(c) 0.0095 K

[ISM Dhanbad 1994]

(b) 0.095 K

(a) Increasing the temperature of 10 qm of water through 10°C

(c) $Q = \int_{-1}^{2} C_P dT, W = 0$ (d) None of these

Advance level

16.

17.

252 Joule/kg K)

of 100 qm of water through 10°C

4200 J of work is required for

(a) 0.95 K

A thermally insulated chamber of volume $2V_0$ is divided by a frictionless piston of area S into two equal parts A 25. and *B*. Part *A* has an ideal gas at pressure P_0 and temperature T_0 and in part *B* is vacuum. A massless spring of force constant *k* is connected with piston and the wall of the container as shown. Initially spring is unstretched. Gas in chamber A is allowed to expand. Let in equilibrium spring is compressed by x_0 . Then

CLICK HERE

(a) Final pressure of the gas is $\frac{kx_0}{s}$

Get More Learning Materials Here : 💴

Thermodynamic Processes 121

(d) None of these

(b) Increasing the temperature

[CPMT 1986]


		e gas is $\frac{1}{2}kx_0^2$						
	(c) Change in interna	al energy of the gas is $\frac{1}{2}kx_0^2$						
	(d) Temperature of t	he gas is decreased		•				
		Problems based on	Isothermal proces	56				
6.	Which is incorrect			[DCE 2001]				
	(a) In an isobaric pro	pcess, $\Delta P = 0$	(b)	In an isochoric process, $\Delta W = 0$				
	(c) In an isothermal	process, $\Delta T = 0$	(d) In an isothermal p	rocess, $\Delta Q = 0$				
7.	Consider the following statements							
	Assertion (A): The isothermal curves intersect each other at a certain point							
	Reason (R) : The iso	thermal changes take place slow	vly, so the isothermal curv	ves have very little slope				
	Of these statements [AIIMS 2001]							
	(a) Both A and R are true and R is a correct explanation of A							
	(b) Both A and R are true but R is not a correct explanation of A							
	(c) A is true but R is false							
	(d) Both A and R are false							
	(e) A is false but R is	; true						
8.	The isothermal bulk	modulus of a perfect gas at norn	nal pressure is					
	(a) $1.013 \times 10^5 N/m^2$	(b) $1.013 \times 10^6 N / m^2$	(c) $1.013 \times 10^{-11} N/m^2$	(d) $1.013 \times 10^{11} N/m^2$				
29.	When an ideal gas in a cylinder was compressed isothermally by a piston, the work done on the gas was found to be $1.5 \times 10^4 J$. During this process about							
	(a) 3.6×10^3 calorie of heat flowed out from the gas (b) 3.6×10^3 calorie of heat flowed into the gas							
	(c) 1.5×10^4 calorie of	heat flowed into the gas	(d) 1.5×10^4 calorie of h	eat flowed out from the gas				
0.	If a gas is heated at constant pressure, its isothermal compressibility							
	(a) Remains constant (b) Increases linearly with temperature							
	(c) Decreases linearl	y with temperature	(d) Decreases inversel	y with temperature				
31.	<i>N moles</i> of an ideal diatomic gas are in a cylinder at temperature <i>T</i> . Suppose on supplying heat to the temperature remain constant but <i>n</i> moles get dissociated into atoms. Heat supplied to the gas is							
	(a) Zero	(b) $\frac{1}{2} nRT$	(c) $\frac{3}{2} nRT$	(d) $\frac{3}{2}(N-n)RT$				
		Problems based on	Adiabatic proces					
~	The clance of icothor							
2.	The slopes of isothermal and adiabatic curves are related as							
	(a) Isothermal curve slope = Adiabatic curve slope (b) Isothermal curve slope = $\gamma \times$ Adiabatic curve slope							
	(c) Adiabatic curve slope = $\gamma \times$ Isothermal curve slope (d) Adiabatic curve slope = $\frac{1}{2} \times$ Isothermal curve slope							
		· · · · · · · · · · · · · · · · · · ·	a coupl to the change in in	townal an an art of the sustain Furbar				
33.	The work done in wh	ich of the following processes is	s equal to the change in h	nternal energy of the system [UPSE				

34. In an adiabatic process, the state of a gas is changed from P_1, V_1, T_1 to P_2, V_2, T_2 . Which of the following relation is correct

CLICK HERE

(»

Get More Learning Materials Here : 💶

[Orissa JEE 2003] (c) $T_1 P_1^{\gamma} = T_2 P_2^{\gamma}$ (a) $T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1}$ (b) $P_1 V_1^{\gamma - 1} = P_2 V_2^{\gamma - 1}$ (d) $T_1 V_1^{\gamma} = T_2 V_2^{\gamma}$ Pressure-temperature relationship for an ideal gas undergoing adiabatic change is $(\gamma = C_p / C_v)$ 35. [CPMT 1992; MP PMT 1986, 87, 94, 97; DCE 2001; UPSEAT 1999; 2001; AFMC 2002] (a) $PT^{\gamma} = \text{constant}$ (b) $PT^{-1+\gamma} = \text{constant}$ (c) $P^{\gamma-1}T^{\gamma} = \text{constant}$ (d) $P^{1-\gamma}T^{\gamma} = \text{constant}$ A monoatomic gas ($\gamma = 5/3$) is suddenly compressed to $\frac{1}{8}$ of its original volume adiabatically, then the pressure 36. of the gas will change to [CPMT 1976, 83; MP PMT 1994; Roorkee 2000; KCET (Engg./Med.) 2000; Pb. PMT 1999, 2001] (a) $\frac{24}{5}$ (b) $\frac{40}{2}$ (c) 8 (d) 32 initial times it's pressure Consider the following statements 37. Assertion (A): In adiabatic compression, the internal energy and temperature of the system get decreased **Reason (***R***)** : The adiabatic compression is a slow process Of these statements [AIIMS 2001] (a) Both A and R are true and R is a correct explanation of A (b) Both A and R are true but R is not a correct explanation of A (c) A is true but R is false (d) Both A and R are false (e) A is false but R is true If γ denotes the ratio of two specific heats of a gas, the ratio of slopes of adiabatic and isothermal *P-V* curves at 38. their point of intersection is (c) $\gamma - 1$ (a) $1/\gamma$ (b) γ (d) $\gamma + 1$ 39. During the adiabatic expansion of 2 moles of a gas, the internal energy was found to have decreased by 100 J. The work done by the gas in this process is (c) 200 J (a) Zero (b) - 100 J (d) 100 J For an adiabatic expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is equal to [CPMT 1983; MP PMT 1990] 40. (b) $-\frac{\Delta V}{V}$ (a) $-\sqrt{\gamma} \frac{\Delta V}{V}$ (c) $-\gamma \frac{\Delta V}{V}$ (d) $-\gamma^2 \frac{\Delta V}{V}$ The pressure in the tyre of a car is four times the atmospheric pressure at 300 K. If this tyre suddenly bursts, 41. its new temperature will be ($\gamma = 1.4$) (b) $300\left(\frac{1}{4}\right)^{-0.4/1.4}$ (a) $300 (4)^{1.4/0.4}$ (c) $300(2)^{-0.4/1.4}$ (d) $300 (4)^{-0.4/1.4}$ 42. When a gas expands adiabatically (a) No energy is required for expansion (b) Energy is required and it comes from the wall of the container of the gas (c) Internal energy of the gas is used in doing work (d) Law of conservation of energy does not hold The adiabatic elasticity of hydrogen gas (γ = 1.4) at N.T.P. is 43. (a) $1 \times 10^5 N / m^2$ (b) $1 \times 10^{-8} N / m^2$ (c) $1.4 N / m^2$ (d) $1.4 \times 10^5 N/m^2$

Get More Learning Materials Here :

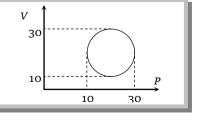
124 Thermodynamic Processes

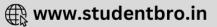
44. Two identical adiabatic vessels are filled with oxygen at pressure P_1 and P_2 ($P_1 > P_2$). The vessels are interconnected with each other by a non-conducting pipe. If U_{01} and U_{02} denote initial internal energy of oxygen in first and second vessel respectively and U_{f_1} and U_{f_2} denote final internal energy values, then

45. The volume of a gas at two atmospheric pressure is 1 *litre*. Its volume is increased to 4.5 *litre* by adiabatic process, then the heat taken by the gas in calories in this process will be

(a) 840 (b) 84 (c) 8.4 (d) Zero

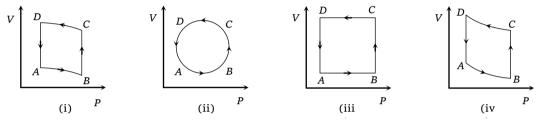
Problems based on Isobaric process


46.	In which process the P-	<i>V</i> indicator diagram is a straig	ht line parallel to volume	axis [KCET (Engg./Med.) 2000; CPMT 2		
	(a) Irreversible	(b) Adiabatic	(c) Isothermal	(d) Isobaric		
47 .	When heat is given to a	gas in an isobaric process, the	n			
	(a) The work is done by	the gas	(b)	Internal energy of the gas		
incre	ases					
	(c) Both (a) and (b)		(d) None from (a) and (b)		
48.	The specific heat of h	ydrogen gas at constant pres	sure is $C_p = 3.4 \times 10^3 \ cal \ / k$	$x_g \circ C$ and at constant volume is		
		f one <i>kilogram</i> hydrogen gas The gas to maintain it at consta		20°C at constant pressure, the		
	(a) 10 ⁵ calories	(b) 10^4 calories	(c) 10^3 calories	(d) 5×10^3 calories		
49.	-	onverted into steam by boili he work done by the system is		ure. The volume changes from		
	(a) - 340 <i>kJ</i>	(b) – 170 <i>kJ</i>	(c) 170 <i>kJ</i>	(d) 340 <i>kJ</i>		
50.	A vessel contains an ide Then work done by the	• •	oands at constant pressur	e, when heat Q is supplied to it.		
	(a) <i>Q</i>	(b) 3Q/5	(c) 2Q/5	(d) 2 <i>Q</i> /3		
51.		overt 1 cubic centimeter of wa nosphere. Then the work done		bic centimeter of steam at 100°C pressure is nearly		
	(a) 540 <i>cal</i>	(b) 40 cal	(c) Zero cal	(d) 500 <i>cal</i>		
52. When 1 g of water changes from liquid to vapour phase at constant pressure of 1 atmosphere, the increases from 1 cm^3 to 1671 cc. The heat of vaporisation at this pressure is 540 cal/g. The increase in i energy of water						
	(a) 2099 J	(b) 3000 J	(c) 992 <i>J</i>	(d) 2122 J		
	Pro	blems based on Cyclic	and non-cyclic pr	ocess		


CLICK HERE

- **53.** Heat energy absorbed by a system in going through a cyclic process shown in figure is
 - (a) $10^7 \pi J$
 - (b) $10^4 \pi J$
 - (c) $10^2 \pi J$
 - (d) $10^{-3} \pi J$

54. A system, after passing through different states returns back to its original state is


Get More Learning Materials Here : 💵 🦳

Positive in cases (i), (ii) and

- (a) Adiabatic process (b) Isobaric process (c) Isothermal process (d) Cyclic process A thermodynamic system is taken from state A to B along ACB and is brought back to A along BDA as shown in 55. the PV diagram. The net work done during the complete cycle
 - (a) $P_1ACBP_2P_1$
 - (b) ACBB'A'A
 - (c) ACBDA
 - (d) ADBB'A'A
- 56. In the diagrams (i) to (iv) of variation of volume with changing pressure is shown. A gas is taken along the path ABCD. The change in internal energy of the gas will be

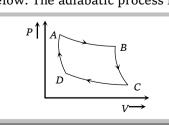
(b)

 $3\overline{P}$

2P

 P_{c}

(a) Positive in all cases (i) to (iv)


(iii) but zero in (iv) case

(c) Negative in cases (i), (ii) and (iii) but zero in (iv) case (d) Zero in all four cases

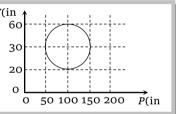
- A system is taken through a cyclic process represented by a circle as shown. The heat absorbed by the system is 57.
 - (a) $\pi \times 10^3 J$
 - (b) $\frac{\pi}{2}J$
 - (c) $4\pi \times 10^2 J$
 - (d) πJ
- A thermodynamic system undergoes cyclic process ABCDA as shown in figure. The work done by the system is 58.
 - (a) P_0V_0
 - (b) $2P_0V_0$
 - (c) $\frac{P_0 V_0}{2}$
 - (d) Zero

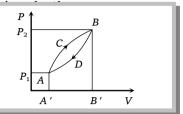
Problems based on Second law of thermodynamics

- The *P*-*V* graph of an ideal gas cycle is shown here as below. The adiabatic process is described by 59.
 - (a) AB and BC
 - (b) AB and CD
 - (c) BC and DA
 - (d) BC and CD

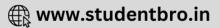

Α \overline{V}_{0}

 $2V_{o}$


[CPMT 1985; UPSEAT 2003]


Get More Learning Materials Here :

V(in 60 30 20 0 50 100 150 200 P(in O


126 Thermodynamic Processes

60. A measure of the degree of disorder of a system is known as									
	(a) Isobaric	(b) Isotropy	(c) Enthalpy	(d) Entropy					
61.	The efficiency of Carnot engine operating with reservior temperature at 100 K and -23 K will be								
	(a) $\frac{100+23}{100}$	(b) $\frac{100-23}{100}$	(c) $\frac{100+23}{373}$	(d) $\frac{100-23}{373}$					
62.	Coefficient of perfo	ormance of an ideal refrigera	tor working between tempe	erature T_1 and T_2 ($T_1 > T_2$) is	[AFMC 1996]				
	(a) $\beta = \frac{T_2}{T_1 - T_2}$	(b) $\beta = \frac{T_2}{T_1 + T_2}$	(c) $\beta = \frac{T_1}{T_1 - T_2}$	(d) $\beta = \frac{T_1}{T_1 + T_2}$					
63.	3. Entropy of a thermodynamic system does not change when this system is used for								
	(a) Conduction of h work isobarically	neat from a hot reservoir to a	(b) Conversion of h	neat into					
	(c) Conversion of h isochorically	neat into internal energy isoc	horically (d)	Conversion of work	into heat				
64.	The second law of t	hermodynamics states that							
	(a) Heat is neither created nor destroyed								
	(b) Heat can be converted into other forms of energy								
	(c) Heat flows from a hot object to a cold one								
	(d) The mechanical	(d) The mechanical equivalent of heat is the amount of energy that must be expended in order to produce heat							
65.	5. A Carnot engine works between ice point and steam point. Its efficiency will be								

(a) 26.81% (b) 53.36% (c) 71.23% (d) 85.42%

Get More Learning Materials Here : 💻

${\cal A}$ nswer Sheet (Practice problems)

1	2	2	4	_	6.	-	8.	0	10
1.	2.	3.	4.	5.	0.	7.	0.	9.	10.
а	d	d	d	d	с	С	а	b, c	с
11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
a	с	с	b	b	а	b	b	a	а
21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
b	b	с	a	a, b, c, d	d	e	а	b	а
31.	32.	33.	34.	35.	36.	37.	38.	39.	40.
b	с	a	a	d	d	d	b	d	с
41.	42.	43.	44.	45.	46.	47.	48.	49.	50.
d	с	d	d	d	d	с	b	d	с
51.	52.	53.	54.	55.	56.	57.	58.	59.	60.
b	а	с	d	с	d	d	d	с	d
61.	62.	63.	64.	65.					
а	а	d	С	a					

126

